前沿| 大数据时代:新技术在智能交通领域研究方向

2020-08-25 17:35:37 作者: 前沿| 大数
目前,工业界、学术界利用深度学习算法已经实现了高级阶段的一些关键性突破,能够实现少数民族语言、方言、口音、轻度噪音环境的语音识别分析,语音识别率可以达到95%,还可通过语气判断讲话人的性格及心情,通过训练实现人机对话。
4.2计算机视觉技术
当前计算机视觉技术在智能交通领域的主要突破有以下五个方面:(1)由基于计算机视觉技术的目标检测到目标跟踪;(2)由简单、纯净的场景到复杂场景下检测、跟踪、识别,提高算法的鲁棒性;(3)由简单的汽车电子号牌识别到车型、多种微观特征识别;(4)由机动车的检测跟踪到行人的检测跟踪;(5)由静态图片的目标分析到动态视频检索。
4.3智能化交通信号控制技术
过去传统的交通信号控制多集中于基于路**通流参数确定信号控制方案。目前,信号控制技术的突破方向有:(1)交通信息采集手段的突破,从原有的基于“点”的、“单一”方式到基于“区域”的、“多源”方式,实现汽车电子标识、互联网车辆定位数据、视频、地磁、雷达等多种交通数据的融合互补;(2)智能载体的突破,从原有前端信号控制器的智能化到上端中心的智能化,不仅能够实现单点的信号控制,更可以实现千道控制甚至区域控制;(3)评价方法的突破,从原有的基于饱和度、停车次数、排队长度、信号延误、效率系数等指标评价单点信号控制方案的好坏到单点信号配时对周边区域的交通影响评估。
4.4汽车电子标识技术
汽车电子标识是智能交通管理系统的高精度、高准确性、海量、动态数据的采集源。汽车电子标识技术突破方向有:(1)汽车电子标识标签技术,包括超高效率整流电路设计技术、超低功耗技术、全频段宽带和高增益技术、存储数据的高可靠性技术;(2)读写设备技术,包括基于分离元器件和芯片的读写设备设计、空口效率优化技术、安全技术、通信协议技术等。基于汽车电子标识技术与交通物联网视频监控技术的联合使用,在高速公路、公路收费站以及城市主干道、出人***叉路口等现有的交通技术监控设备上加装电子标识识读设备,并在汽车站、大型停车场、居民小区和单位门禁等位置(区域)安装识读设备,采集车辆精确行驶轨迹数据,并上传汇总至部、省两级车辆轨迹数据中心,可以实现对全国车辆行驶轨迹的精确管控。
4.5数据湖蓝光存储技术
该技术的提出源于数据使用频率的2/8原则,即城市大数据中有20%数据高频使用、80%数据低频使用,采用蓝光、磁存一体化应用方案,是新大数据时代最理想的数据存储架构。数据湖蓝光存储技术实现了三方面的突破:(1)自主研发的光盘库管理软件,实现了蓝光存储产品的统一监管、控制和管理,解决了蓝光光盘的智能化操控,目前单台蓝光存储容量可以达到1.9PB;(2)自主研制了“基于在线磁盘存储系统+光盘存储系统”的多级存储架构,实现了EB级大数据光磁存储,并将数据合理保存在光、磁两种存储设备中,同时不同速率的访问要求可使存储设备节电约80%;(3)城市数据湖大数据人工智能引擎,采用模型高性能训练及自主增强引擎、模型应用异构引擎、智能检索引擎,提供图像识别、人脸识别、人车物检测、视频摘要等人工智能服务,依托城市数据湖升级提供智慧驱动力。


05

紧密结合交通需求的技术研究建议


结合智能交通建设需求,围绕视频精准识别、运维智能检测系统、智能化交通信号控制、大数据标准制定、贯穿数据全生命周期的新技术应用等,提出具体的技术研究方向建议。
5.1视频精准识别
(1)优化视频智能分析算法,实现包括车辆异常行为、燃爆等交通事件的精准识别。
(2)降低算法能耗.即通过减少物理服务器节点的工作量,重新配置任务,然后让一部分工作量极少的节点休眠,从而达到节能的效果,改变过去过度依赖通过扩展服务器数量实现秒级搜索响应的做法。
5.2运维智能检测系统
开展跨平台自检、跨产品的智能化联合检测技术研究。从设备运维单一产品的网上巡检到城市级、行业级,开发突破产品、突破企业的运维智能检测系统。
5.3智能化信号控制
开展复杂交通信息对交通控制的综合影响研究。传统的交通信号控制研究主要分析单一路口的交通流数据对信号控制方案的影响,不适用于复杂、不确定的交通,实际效果较差。
5.4大数据标准制定
开展政府、企业间大数据标准及数据共享机制研究。一般情况下,政府的数据可以通过法律程序推动数据的统一化、标准化。但是,企业内部及企业间的数据呈现碎片化、零散化、不规范的特点。因此,研究企业间、企业与政府间的共享机制势在必行。
5.5贯穿数据全生命周期的新技术应用