前沿| 大数据时代:新技术在智能交通领域研究方向

2020-08-25 17:35:37 作者: 前沿| 大数
研究人工智能等新技术在数据全生命周期的应用,包括数据采集、存储、处理、应用等阶段。实现不仅具有智慧大脑,还要有匹配智慧机体的智能交通系统。

06

结论


智能交通行业日益凸显的痛点及需求体现在以下几个方面:由数据散乱、技术散乱、业务散乱及应用散乱转向资源整合;数据处理分析方法由简单的数据统计转向辅助智能决策;由数据结构化、算法低效转向数据智能清洗提取、超算高效;由被动搜索信息、被动管理转向信息主动推送、主动服务;
汽车由传统交通工具转向下一代移动智能终端。大数据、人工智能还处于早期发展阶段,并且多是集中在数据处理环节探索数据融合挖掘技术的应用,并没有着眼在某一业务领域研究覆盖数据采集、存储、处理、应用全生命周期的新技术。围绕自然语言处理、计算机视觉、智能化交通信号控制、汽车电子标识、数据湖蓝光存储等新技术,本文提出新技术未来在智能交通领域的突破性应用,如车辆异常行为跟踪、车辆燃爆事故精准发现预警、多源全视角的交通信号控制等(本文作者:赵新勇)

往期报告精选:

报告精选| 华为5G C-V2X车联网解决方案内部报告(30页PPT全文)
应用报告分享| 智能停车场解决方案及商业运营分析(35页PPT完整版)

研报精选|车联网深度报告:车联网V2X,5G下游应用黄金赛道
更多V2X及智慧交通完整研究报告,请长按关注本公众号免费查阅!

【免责声明】文章为作者独立观点,不代表智车行家立场。如因作品内容、版权等存在问题,请于本文刊发30日内联系智车行家进行删除或洽谈版权使用事宜。